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On a Sequence Arising in Series for 7T 

By Morris Newman* and Daniel Shanks 

Abstract. In a recent investigation of dihedral quartic fields [6] a rational sequence (a,) was 
encountered. We show that these an are positive integers and that they satisfy surprising 
congruences modulo a prime p. They generate unknown p-adic numbers and may therefore be 
compared with the cubic recurrences in [1], where the corresponding p-adic numbers are 
known completely [2]. Other unsolved problems are presented. The growth of the an is 
examined and a new algorithm for computing an is given. An appendix by D. Zagier, which 
carries the investigation further, is added. 

1. Introduction. The sequence (an) that begins with 

(1) a, = 1, a2 = 47, a3 = 2488, a4 = 138799, 

a5 = 7976456, a6 = 467232200, 

and which is defined below, is encountered in a set of remarkable convergent series 
for r. These are (see [6]): 

(2) 7r =-( logl Ul- 24 E ) : )n 

where N is a positive integer and U = U(N) is a real algebraic number determined 
by N. Some of these series are remarkable because of their almost unbelievably rapid 
rates of convergence. 

For example, for N = 3502, (2) converges at 79 decimals per term and its leading 
term, namely 

3 2 log U, 

differs from iT by less than 7.37 10-82. In this case, 

(3) U= U(3502) = (2defg)6, 

where 

(4) d = D + RID2 _ I, e E + rE2 - I 

f=F+ F2- 1, g=G+ vG2-2lI 

for the quadratic surds 

D = (1071 + 184x3-4), E = (1553 + 266V34), 

F= 429 + 304V/-, G= (627 + 4422). 

In this example, the six a. in (1) already give Ir correctly to over 500 decimals. 
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For N = 2737, and the more general 

(6) U= (_1)N(2defgy)6, 

the quadratic surds 

D = '(621 + 4916V), E = *(321 + 2561), 

(7) F = (393 + 31VI 6), G = *(2529 + 199 161), 

and (4) unchanged, define its negative value of U(2737). Now (2) converges at only 
69 decimals per term. See [6] for other examples of even and odd N, and the 
corresponding positive and negative values of U, where (2) also converges very 
rapidly. 

The definition given in [6] of an is rather complicated. We have a relation 
00 

(8) U = v (I + Vn)14 
tt = I 

between our U = U(N) and the number 

(9) V~~~~ = V(N) = -)Ne~7J 

The inversion of (8) gives V as a power series in U: 
00 

(10) V E ( n-I un 
t= 1 

that begins with cl = 1, c2 = 24, c3 = 852,.... Now, in the power series for 

(11) logl rf (I + V") = V+ +2 *. 

substitute (10), and thereby define an recursively by 
00 

a(00 

(12) E (- 1) n U = log H (1 + Vn)}. 

Then, the logarithm of (8) gives us (2). 
In [6], only the six coefficients in (1) were given, since they were computed by 

hand, a tedious operation. (The original an so computed contained an error which 
was discovered when R. Brent kindly attempted to verify (2) for N = 3502 to the 
aforementioned 500 decimals.) Clearly, the an are best calculated using a digital 
computer. The first 100 values of an and Cn were so computed in about 8 minutes. 
The first 50 values of an and cn are given in Tables I and 2. 

2. Properties of an. A. We observe that all an in Table 1 are positive integers. It 
was obvious from the recursion above that the an are rational but not that they are 
positive and integral. However, we prove below that 

00 

(13) 24an is the coefficient of xnin 11 (1 + x2k-1)24n, 
k= I 

which implies that an is a positive integer. 
B. We observe that all an in Table I satisfy 

(14) an is odd if and only if n is a power of 2. 
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This unexpected result is reminiscent of C. R. Johnson's conjecture for the parity of 
the number of subgroups of the classical modular group of a given index N, see (7]. 
That conjecture was proved by Stothers and, independently, by A. 0. L. Atkin. The 
present observation (14) is proved below. 

C. A striking paradox about this proven (14) for the parity of an is this: As 
presented above, the C,, in (10) would appear to constitute a simpler sequence than 
our an in (12), since its definition is much more direct. Nonetheless, we have been 
unable to determine the parity of cn. In Table 2 one readily observes that 
(14a) C isoddonlywhenn = 8k + 1 andisoddifk = 0, 1,2,4,6. 

But what are these k? We do not know, and do not even have a conjecture for the 
parity of Cn. 

It is easy to prove (14a) and to compute Cn modulo 2. The parity of cn appears to 
be random with increasing k just as is the parity of the unrestricted partition 
function p(n). (See [8] for the latter.) As for the claim above that we have a paradox 
here, see Zagier's comment in the appendix. 

D. A second, more important paradox concerns an modulo 3. We conjectured 
(15) an t0mod3 

for all n. While (15) appears simpler than (14), we did not prove it. Every positive 
integer n has a unique representation 

(16) n = 3k(3m ? 1) 

with nonnegative k, m. A stronger conjecture than (15) is 

(17) a3k(3m?1)= ?Ilmod3. 

For greater clarity, let us rewrite (17) as follows: 

(18a) a3 +l--1mod3, 
(1 8b) a3m -I mod 3, 

(18c) a3m am mod 3. 

These are clearly equivalent to (17). We did not prove the simple-looking (18a) and 
(1 8b). The more subtle-looking (1 8c) we did prove; it is a simple corollary of a much 
more general congruence given in E below. 

We did verify (17) up to a143 = - 1 mod 3 by computer, and we both believed it to 
be true. After we finished the first version of this paper, we showed the conjecture to 
D. Zagier, and, as we expected, he proved it. See the appendix. 

E. The important general congruence alluded to above, and proved below, is 
(19) ampk= ampk - Imod pk, 

valid for every prime p and all positive integers m and k. For k = 1 this gives us 
(20) amp = am mod p 

and (1 8c) is obviously the case p = 3. 
Congruence (20) is computationally useful. For example, what is a94 modulo 94? 

Since 

a247 --a2 = 47 mod47, 
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we have a94 0 mod 47. But also a94 0 mod 2, by (14). Therefore a94 0 mod 94. 
Similarly, we can evaluate a2p modulo 2p for any prime p, and in particular we see 

that, for any prime p, 

(21) a2p t 1 mod 2p. 

F. The choice m = 1 in (20) gives us 

(22) ap- a 1 mod p, 

which we call the Fermat Property. It is a necessary condition for primality. Of 
course, we ask: Is 

(23) an-1modn. n>1, 

a sufficient condition for primality? 
We have just seen in (21) that n = 2p can never satisfy (23). But consider 

a3 = 2488 = 3 829 + 1. 

Since 829 is prime, we have by (20) that 

a2487= a3 1 mod 829, 

and similarly 

a,247 a829 mod 3. 

But 829 = 3m + 1, and since (1 8a) is now true, we also have 

(24) a,4877 1 mod 3. 

Then (23) holds for the composite 2487 = 3 829. So (23) is not a sufficient 
condition for primality. Even if it were, it would not be a practical test for primality. 
The calculation of an modulo n requires at least 0(n) operations by any algorithm 
known to us. 

G. We return to (19) and specialize in a different direction; m = 1 gives us 

(25) apA- apA mod p&. 

Fix p and consider the sequence 

(26) (apA modulo p k), k = 1, 2, 3, . 

If we write these numbers to the base p, (25) guarantees that each time k is increased 
by 1, and we add one more p-adic digit on the left, all the earlier p-adic digits on the 
right remain unchanged. Thus, for each p, the sequence (26) defines a p-adic number. 

For example, for p = 2, (26) begins (in decimal) as 1, 3. 7, 15, 15, 47,..., and so 
we have the 2-adic number (reading from right to left) 

... 10001011 1 1. (base2). 

Similarly, for p = 3 and 5, we have 

...01 11. (base3) 

411. (baseS). 

But what are these p-adic numbers? We do not know. Are they algebraic or 
transcendental? We do not know. Contrast this ignorance with the situation in I 
below. 
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We do have, for every p, 

(27) a 2-1 +?pmodp2, 

so the first two p-adic digits on the right are both 1. The first I follows from the 
Fermat Property (22) but the second 1 does not follow from the general congruence 
(19), and again contrasts with the situation in I below. This (27) was first proved by 
our colleague L. Washington. Our proof below is different. 

Perhaps we should note that the sequence 

(28) (ap k) k-= 1,2,3p... 

defines the same p-adic number that (26) does. The latter looks a little simpler since 
it adds exactly one p-adic digit each time. 

H. After we discovered (1 8c), we were inspired to generalize it to (19) because of a 
recent paper [1] concerning some entirely different sequences; namely, a doubly 
infinite set of cubic recurrences. It suffices for our discussion here to examine only 
one of these recurrences. Let 

(29) A(1)= 1, A(2) = X, A(3) = 4, A(n + 3) =A(n + 2) +A(n). 

We have [1] 

(30) A(mpk) A(mpk') mod pk 

just as before. So we also have the Fermat Property and p-adic numbers defined by 

(31) (A( pk) modulo pk). 

1. But the A(n) are nonetheless quite different than the an. First, since 
A(4)- Imod4, A(9)-4 mod 9, 

(27) does not hold, and the second p-adic digit is not invariant. Second, we can 
identify the p-adic numbers (31). For example, for p = 2, we now have 

... I 0 0 1 0 1 . = x (base 2). 
Squaring this, it is easy to show that 

x2 + x + 2=0, 
and so x is one of the 2-adic numbers 

o(-}? +7). 

In fact, for every p, (31) is an abelian algebraic integer; see [1], [2]. 
The evaluation of these algebraic integers is of much algorithmic interest and is 

also of much mathematical interest since, e.g., it leads to new ideas in cyclotomy; see 
[5]. But more to the present investigation, this p-adic approach enables one to solve 
problems about A ( n) that were previously intractable, as in [21. 

One might hope that the determination of the p-adic numbers in (26) would be 
equally valuable for a.. Presumably, the distinctive property (27) plays a role in their 
arithmetic characterization. We commend these problems to the reader. 

J. If we generalize (31) to 

(32) {A(mpk) modulopk) 
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for p fixed, and m any integer, we define a set of p-adic numbers. This set is finite, 
and each of these numbers is either an algebraic conjugate of that for m = 1, or is a 
related abelian integer of a lower degree. 

Similarly, in the present investigation, 

(33) (ampA modulo pk), 

with m a fixed positive integer, defines a p-adic number for each m generalizing (26). 
But we have not seriously examined this set of p-adic numbers and know little about 
it. 

K. Let us note some other differences between A(n) and a,n. The former sequence 
is periodic modulo p for every p, but the latter is not. The former is a reversible 
recurrence, and so we have 

A(O) = 3, A(-1) = O, A(-2) = -2,.... 

while an is not defined for n < 1. The value of A (n) modulo n can be computed in 
O(log n) operations. We know of no algorithm that is that efficient for our a,, 
modulo n. We have 

A(n) = an + /n + yn 

for known values of a, /, y while we know of no explicit formula for a,,. 
Since an and A(n) are so very different, it is all the more surprising that they have, 

in (19) and (30), an elaborate, important property in common. We call this property 
the generalized p-adic law. 

Naturally, one asks: Can one characterize all sequences a(n) that satisfy this law? 
This may already be known. 

Zagier also comments on the comparison of an and A(n). 
L. We now turn to the growth of the an. In the analytic function V(U) in (10) the 

closest singularity to the point U= 0, V = 0 is the branch point at U= = 64, 
V = - & r; see [6, Appendix B]. Therefore, the radius of convergence of (10) is I, 

and it follows that 

(34) tim = 64. 
n o-Cc C 

In the substitution of (10) into (11), the growth of the an is dominated by the 
growth of the cn, and it may be shown that also 

(35) lim n+1 = 64. 
n -oo an 

M. We therefore have the asymptotic formula 

(36) log an - n log 64, 

but an asymptotic formula for an itself was lacking. We expected that 

(37) a,, - , (64)n, C, /3 constants, 

but we did not prove it. 
In the Appendix, Zagier determines that /8 = 2 (as we expected), and that 

IC- AF7T (3/4) 2 

12 Fr 1 /4X 
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Further, he gives two more terms in the asymptotic series, and thereby enables one 
to estimate an very accurately. 

Prior to this work we had already found the inequalities (38) below, and since 
these are of some interest, we include the derivation. 

(38) 1 (63.87) < 24an < (64) . 

N. Zagier's evaluation of C suggests the following sequel. This C is closely related 
to the famous lemniscate constant, and, in retrospect, some such result should have 
been expected. In [6], the group C(4) was basic, and therefore our sequence an is 
intimately connected with this group. But the lemniscate constant often arises with 
C(4); for example, Q( - 14 ) has C(4) as its class group, and, in counting numbers 
of the form u2 + 14v2, the lemniscate constant enters via the constant /14 referred 
to in [9, Eq. (5)]. 

Now, in the modular group, one encounters p = VI as well as i = VI, and 
therefore C(3) as well as C(4), and [6, p. 405] specifically refers to analogous theories 
for C(3) and C(6). So, there may well be other sequences analogous to an that would 
arise in this way. We have not yet studied this. 

In the quadratic form 4U2 + 2uv + 7V2 we do have class number 3, and in 
counting numbers of this form one does indeed encounter a constant which contains 
F(1/6) instead of F(1/4); see [10, Eq. (5)]. If there are such sequences, one would 
expect Zagier's calculations to have analogues here. 

3. Proofs of the Theorems. The function 
00 

y = x H (1 + Xk) 
k= l 

defined in (8) (the variable names have been changed) is of importance in the theory 
of the elliptic modular functions. y is a Hauptmodul for the congruence subgroup 
ro(2) of the classical modular group r, considered as a function of the complex 
variable , where x = exp(27rir), im T> 0. (See [4] for a good general reference on 
this topic.) However, all that is required here is a formal study of the coefficients of 
yfn, where n is an integer. In this connection certain complex integral formulas 
assQciated with the inversion of a function of the form y = x + b2x2 + _ _ _(or the 
reversion of a power series of this form) will be used freely. These are classical, and 
may be found for example in the book by Behnke and Sommer [3]. 

The numbers a,, are defined by the relationship (12), rewritten as 
00 

(39) logy - logx = 24 (-) nyn 
n=1n 

Differentiating (39) with respect to y, and then multiplying by y, we have that 

y dx ~~00 nI n 

(40) 1 yd = 24 E (- 1) a y 
(40) ~~~~~x dy naInY. 

Hence for some suitable positive number r, we have that 

(-1)n '24an = 2- d -n-Idy, 
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so that, for n > 1, 

(1)" 24a,, = 7j,iX ) "dy. ( ) a 2~~ri lil= r(x dy) 

This implies that, for some suitable positive number r', 

(-1) 24a,= 2iJ I Y dx 

00 

= - x n1 (l?x)x-n- +X- 24ndX. 
2X1fivl=r' = 

It follows that, for n > 1, (- I)n 24a,n is the coefficient of x' in the power series 
expansion of f= l(I + xA )24nl. If we use the fact that 

OC 

= 

00 0 

I7(1 + XI= 11(1 - x2A- I) 

and replace x by -x, we obtain (13) and write 

THEOREM 1. The number 24a,n defined by (39) is the coefficient of x" in the infiniite 
product H% (I + x2*1)24?1 

This proves immediately that these numbers are positive, but a small additional 
discussion is required to prove that a,, is an integer (because of the factor 24). 

We set 

(41) H (1 + X2A -1)24n1 = C,,(k)x A 
k=l A=() 

so that 

(42) 24a,, = C,,(n). 

We find by logarithmic differentiation of (41) and known properties of Lambert 
series that the integers Cn(k) satisfy the recurrence formula 

(43) 
kCF(k) 

= 24n ? (- 1)V 
a*(s)C;,(k 

- 
s), 

k >? 
1, S = I 

where Cn(0) = 1, and 

(44) d*(s) d. 

dodd 

For the choice k = n, (42) and (43) imply that 
,, 

(45) a. E 1) -*(s)Cn s) 

which shows at once that a. is an integer. That is, we have proved 

THEOREM 2. The numbers an defined by (39) are positive integers. 

Our next objective is to prove (14), which states the remarkable fact that an is odd 
if and only if n is a power of 2. For this purpose we need to know the parity of the 
function a*(s), defined by (44). We have the following simple lemma, whose proof 
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we omit: 

LEMMA 1. The function a*(s) is odd if and only if s is a square, or twice a square. 

This lemma and formula (45) imply that 

(46) a C(n- 2) + E Cn(n - 2S2) mod2. 

In the first summation, s runs over all positive integers such that 52 < n, and, in the 
second summation, s runs over all positive integers such that 2s2 < n. 

First note that 

(1 + U)16 (1 + U2)8 mod 16, 

where the congruence means that coefficients of corresponding powers of u are 
congruent. This readily implies that 

00 x0 
17 (1 + X2k 1)48n (1 + X4k2)24 mod 16, 

k=l k=i 

which in turn implies that 

24a2n -24an mod 16, 

(47) a2 - anmod2. 

Congruence (47) is the special case p = 2 of the general congruence (20), to be 
proved later. 

Thus, in order to determine the parity of an, it is only necessary to choose n odd, 
which we now do. If we note that 

00 00 

71(1 + x2k1)24n -l (1 + x16k) mod2, 
k=l k=l 

we see that Cn(k) is even except possibly when k 0 mod 8. Then (46) implies that 

(48) an 
= 

E Cn(n -2)+ Cn(n - 22) mod2. 
t _s2O mod 8 n-2s 2=O mod 8 

But n is odd. Thus the second sum in (48) is empty, and in the first sum s must be 
odd, implying that n 1 mod 8. Put n = 8t + 1. Then 

(49) a8t+ I E C8t+1(8t + 1 - 52) - C8,+I(8(t - 2 )) mod 2 

where r runs over all nonnegative integers such that (r2 + r) < t. 
We have 

00 00 

E C8t+I(k)Xk = 17 (1 + X2k-,)24(8t+l) 
k=O k=1 

00 

=1 7(1 + x8k-16)3(8t+l) mod2, 
k = I 

so that 
00 00 

E: C8t+ X (8k )xk - (l + X2k-)24t+3 mod 2. 
k=O k = I 
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Thus 
00 X0 00 

H| (I + x )3k E C8,+1(8k)xk H(I + X2k-1)241mod2. 
k=1 k=O k=I 

Now use the Jacobi identity 
00 00 

11 (I 
_ Xk) - : E _ I-)k(2k + I)X(k2+k)/2 

k-1 k=O 

and the fact that 

00 00 

H (1 + X2k-1) 3 H (1 - Xk)3 mod2 
k=l k=1 

Then 
00 00 00 

E (k2+k/2 E C81+1(8k)xk Hl (1 + x2k1)24, mod2. 
k=O k=O k=l 

It follows that 

E C8t+(8(t- ?(r2 + r))) 

is congruent modulo 2 to the coefficient of x' in Hlk..(I + x2k- )24t. But this 
coefficient is odd if and only if t = 0 (it is divisible by 24 otherwise, since then the 
coefficient is 24a,). It follows from (49) that a81+, is odd if and only if t = 0. 

Summarizing, we have proved 

THEOREM 3. The number an is odd if and only if n is a power of 2. 

Our next objective is to prove (19). If p is a prime and k a positive integer, then 

(1 + u) (1 + NP)" modpk 
where once again the congruence is understood to hold for corresponding powers of 
u. It follows that if m is any positive integer, 

(50) (1 + u) -( + mod pk 

Formula (50) now implies that 

(51) H (1 + x ) P ft (1 + X2p P P mod pk+8 
s -I s=I 

where 

J3, p=2, 
1 p=3, 
0, p >3. 

Comparing coefficients of Xmp on both sides of (51), we find that 

24ampk 24ampk- mod pk+8, 

so that, for all primes p, 

ampk= ampk-lmod p 
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That is, we have proved 

THEOREM 4. Let p be a prime, m, k positive integers. Then 

(52) ampk -ampk -I mod pk 

We now go on to formula (27), which reads 

a 2- 1 +pmod p2, p prime. 

Since (52) implies that 

ap 2= ap mod p2, 

it is sufficient to prove that 

ap 1 + p mod p2, p prime. 

We may assume that p > 3, since the cases p = 2, 3 may be verified directly. We 
have 

( U 1 P-1 + l; + P + p 21 (-I)r 2Mod 2 (+ U)p 1+ up +y2( ur1+ uP+r u op, 
r=1 

so that 

(1+ u) - 1 +/p (1) I Ur mod 2 
r= I 

Now choose u = x2k- , product for k. = 1, 2, 3,..., and raise both sides to the 24th 
power. We get 

k=1 (I + 2kp-p)24 I + 24p r 1+ Xp(2k 1) mod p2 
k > I 

H(1 + x 2k)24P (1 + x2kpp)24 S mod p2, 
k=I k-I 

where 

Ivrvp-I r 1 +x P(2k-1) 
k> I 

Comparing coefficients of xP, we find that 

24ap -24 + 24p mod p2, 

so that 

ap 1 + p mod p2. 

We state this result as L. Washington's 

THEOREM 5. Let p be a prime. Then 

ap2=ap- 1 +pmodp2. 
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We note that these congruences may be strengthened, if desired. A slightly more 
involved proof along the same lines will show for example that 

(53) apA apA I + p modpkl. 

However, it does not seem possible to determine a A modulo pk precisely, except for 
small values of k. 

We now turn to the inequalities of (38). Theorem 1 implies that 24a,, is equal to 

(54) ? (24n )(24n )(24n ) 

n, + 3n3 + 5n+ = n, n, O. 

Since n1 - n, n3 = n5 = = 0 is a permissible choice, we find that 

(55) 24at,> (24n) 

A simple application of Stirling's formula gives 

l 24 24 )I 
I 

24a, - (~)> ~-(63.87)" 

proving the lower bound. 
For the upper bound, we have that if r is any number such that 0 < r < 1. then 

- I n ,dx 
24a,,- g(x) n 27Ti 11x1r()X' 

where 

g(x) = -IH (1 + X2k-1)24. 
X k=I 

It follows that 

(56) 24an <, g (r)" 

Now the function g(x) is an entire modular function on the congruence subgroup 
17(4) of r, considered as a function of the complex variable , where x = exp(2viT), 
and im T> 0. It is easy to show by the transformation formulae for g(x) that 

g(e-l) = 64. 

Choosing r = e - in (56) gives 

24an < 64", 

which is the desired upper bound. 
Summarizing, we have proved 

THEOREM 6. The number an satisfies the inequalities 

1 
(63.87)n < 24an < 64 . 

4. Computation. The first dozen or so coefficients an were initially computed using 
the complicated formula (40). After Theorem I was discovered, recurrence formula 
(43) was used. The coefficients u*(s) are small and easily computed, and (43) is 
convenient and simple to implement. The practical programming problems that arise 
are consequences of the fact that the an become larae. This is heRt hnndlAdA h,1 
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computing them modulo a sufficient number of large primes, and then using the 
Chinese Remainder Theorem to recover their exact values. 

The coefficients c, were computed by means of a general program that reverts a 
power series y = x + - . This program computes the coefficients of the powers of y 
and then solves a triangular system of equations to determine the desired coefficients 
in the reverted power series x = y + --. Once again, residue arithmetic must be 
used, since the coefficients c,, also become large. 

The computation of an modulo m, where some prime factors of m are small, is 
awkward (if not impossible) using formula (43), because of the necessity of the 
division there. The alternative here is to generate u = Hol 0(1 + x2k- 1) modulo 24m 
and then to form u24n by successive squarings modulo 24m. This is time-consuming 
and becomes impractical if n is only moderately large; say n = 1000. 

We note that multiprecision computation (rather than modular computation) 
would be even more time-consuming. In any case there is very little point in 
calculating the exact value of a,(((, say, since it is a number of some 1800 decimal 
digits. 

TABLE 1. an, n - 1(1)50 
2 47 
3 2488 
4 138799 
5 7976456 
6 467232200 
7 27736348480 
8 1662803271215 
9 100442427373480 

10 6103747246289272 
11 372725876150863808 
12 22852464771010647496 
13 1405886026610765892544 
14 86741060172969340021952 
15 5365190340823180439326208 
16 332577246704242939511725615 
17 20655377769544663820919905000 
18 1285027807539621869480480977880 
19 80066610886753513409821525593280 
20 4995543732566526565060187887772024 
21 312067903389730540416319245145039936 
22 19516459352109724206910675815791735872 
23 1221787478073080268912138739833447254528 
24 76558881238278398609546573647116818306504 
25 4801399849802188285872546222298724299377856 
26 301358552889212442951924121355286655092791360 
27 18928524108186605379268259069278244869735006720 
28 1189719542605042010945455887482239233732751142080 
29 74824958481405101799295401923145498080031496317440 
30 4708731584940969251488540213411242070133095720768000 
31 296483323638911778793802123013217365155428610625064960 
32 18677571039055424502042574350078071038555962934810664495 
33 1177200955467256907707767829606512556434525730284672082280 
34 74229820742983998523807878655148660941364964757170232076440 
35 4682657672641000613276353688819373189604961982881761635174080 
36 295516785862704112676947743865736338547152307208873658542187480 
37 18656838683258040776726836797753969443154060448210951169536087360 
38 1178287550937265649491805466460363896744099593833261406542090821440 
39 74441259433548426510664621182339422182178689134172479673100078686720 
40 4704546876230537649051669928635037299315044055233418643313504347890040 
41 29741069638022751047358482192645975459858757799795t261584830786025989440 
42 18807176292551896455842616399574167855948518855982280636468413444438841280 
43 118963250585878541566426818539656831681001296286809523719092401567864480512O 
44 75269436592700558660145646818728077669744495747378078929068356710829357904960 
45 4763606735739477078702262301306618196904330454342036172567804617626114845601280 
46 301550219357655322958904198748139655940272138707157414253528789096123355242370560 
47 19093491105382437947961430595496009051927469794600124607374594862297809973497425920 
48 1209229421833128214532165231904398024088456532579184673374765702204525386892709582280 
49 76599462222171488217469562807555444840329820375936645628428503967599842536403748392640 
50 4853249476279584943018752544135518205835823652569328104071808597099976302206777672382272 
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TABLE 2. cn, n = 1(1)50 

1. 1 
2. 24 
3. 852 
4. 35744 
5. 1645794 
6. 80415216 
7. 4094489992 
8. 214888573248 
9. 11542515402255 

10. 631467591949490 
11. 35063515239394764 
12. 1971043639046131296 
13. 111949770626330347638 
14. 6414671157999386260432 
15. 370360217892318010055832 
16. 21525284426246779936286192 
17. 1258348271935918462435403307 
19. 73942189694396970592980105352 
19. 4364976407960556546884928368476 
20. 258741036471764253091461517733656 
21. 153945669902996363l4282137771674830 
22. 919051542126841276042022053610468752 
23. 55036467624031911199129205093854619064 
24. 3305113970018146870837951018822929583296 
25. 198997564644299363614619190584670328932936 
26. 12010095419986698523773417250172646465263008 
27. 726447806449307612142334095641037351570040864 
29. 44030338964408484455732048896063797435000101120 
29. 2673788167993641289448328163141757626940496197160 
30. 162657220544413978163790054177951326622909359275200 
31. 9911527685383195721813290296876399721821791890405024 
32. 604899293848988432022069057045272028344035971329679616 
33. 36970837629844039304385084970877592615837024206916373053 
34. 2262723529649336738110964266117808613673092565887151549624 
35. 138664460558308431577618908119374772575631693607388403107204 
36. 8508025994367861090277592274660803399661217762484511042274592 
37. 522628921564560754438041506364380503224274143202783433146082586 
39. 32130985548624371564064047392187046675586611595448962068003979900 
39. 1979429759430649446757266681537394592324196828947816361679084306280 
40. 121909076104562854936147780364667494353737124539046206817532045147200 
41. 75189522364236515384284814160248222807587187350416656248567814018345142 
42. 4641570631210460601505952751794487600279131950931382711115296158373950B8 
43. 26677467647308968049978935619470366659282071479283246492919997795984278904 
44. 1773241664402616710570230882425007538906213421415490637996700519569471249856 
45. 10973131487740204588336321752625837337 1802193645670427761282465837822892310196 
46. 6795384565685668272289146836919987952721991497080544929801024614700081667049312 
47. 421118690078289455115442968174088626001358532117276172625513521520959714092751440 
48. 26114944381531477954478272273365362544499925144997518688874107744442010909229903648 
49. 1620524841254019270695075088632356141408000251247290974011208956749850387668408953895 
50. 100621989558697666940849746551782896264800698167206014343658307743170090611911363941160 

APPENDIX 

By D. Zagier 

Asymptotics and Congruence Properties of the an 

In this appendix we prove an asymptotic formula and a congruence modulo 3 for 

the numbers an, assuming various more or less well-known facts from the theory of 

modular forms whose proofs can be found in standard textbooks on modular and 

elliptic functions (e.g. Lang's or Weil's). 
Let T denote a variable in the upper half-plane, q = e 27TiT, and U(T) = 

qHl(l + qnl)24 (q and U were denoted by V and U in Section 1 and by x and y in 
Section 3). Then U(T) = A(2T)/A(T), where A(T)= qH(l - qfn)24 is the usual 
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discriminant function, so U is a nowhere vanishing modular function on Jo(2) and 
its logarithmic derivative 

I V(T) ~~~~00 
(1) f(T) =I2 iU( - 1 + 24 E a*(n)qf (o*asin(44)) 2fi U(T)n=(aasi 4) 

is a modular form of weight 2 on 1o(2). The definition of an can be expressed as 

I 
~~~~00 

(2) f(T) 
= 1 + 24 _ (1) naU(T), 

an identity valid in a neighborhood of T = ioo (it cannot be valid for all T for which 
the series converges, since U is 1O(2)-invariant and f is not). From the formula for 
the number of zeros of a modular form, we see that f(T) vanishes only at points i 

which are JO(2)-equivalent to T = (1 + i)/2 (that f does vanish at T0 can be seen by 
applying the transformation equation off to (2 - I) E ro(2)), and (1) then shows that 
T - U(T) is locally biholomorphic except at these points. Hence the only singularity 
in (2) occurs at U = U(TO) = - 1/64, so to obtain the asymptotics of the an we must 
look at the Taylor series expansions of f and U near T0. In view of (1) and the 
equation f(TO) = 0, it will suffice for this to compute the derivatives f()(Tor) for 
p >. 

Now the derivative of a modular form is not a modular form, but, if F is a 
modular form of weight k on a subgroup F of SL(2, Z), then F' - (7rik/6)E2F is a 
modular form of weight k + 2 on r, where E2 = 1 - 24En' I (d I n d )qn is the usual 

"Eisenstein series of weight 2 on SL(2, Z)" (not actually a modular form), related to 
f by f(T) = 2E2(2T) - E2Q(r). Applying this fact v times and using the idetitity 
El .-(-ri/6)(E2 - E4), where E4 = 1 + 240Ezn; l(dIn d3)qn is the Eisenstein series 

of weight 4 on SL(2, Z), we find by induction that the function 

(3) E r(k + v:) ( _XI E2 ) F) 

is a modular form of weight k + 2v on r. We apply this to F = f, F = o(2), k = 2. 

All modular forms on 1o7(2) are polynomials in f and E4 (this follows easily from the 

formulas for the dimensions of the spaces of modular forms of given, weight), so we 

can identify (3) by computing the first few terms of its q-expansion; we find 

f'- 3 E2f= 
IT 

(2f2-E4), 

f"- riE2f' - E22f 6E4, 

f "' - 2niE2f " - 7r 2E 2f + E23f f 2 (4f 2 3E4) 

etc. At = T= (1 + i)/2 we havef = 0, E2 = 6/,7 and E4 = -12a4, where 

a = I F(1/4) = 0.834626841678 *** 
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(this follows from the well-known E2(i) = 3/-r and E4(i) = 3a4 together with the 
transformation properties of E2 and E4 under SL(2, Z)). Hence we find inductively 
from the above formulas the values 

f'(TCo) = -47Tia4, f "(Co) = 247Ta4, f ... 
) = 1447ria4 

and, continuing in the same way, 

f(iV)( T) = -9607ra4, f(V)( ()- -72007ria4 -9615ia"2. 

Using (1), we obtain the Taylor expansions 

f(T0 + iE) = 4'7ra4(E - 3e2 + 6E3 - 10E4 + (15 + ,r4a8/5)e5 + 

and 

U(r0 + ie) = 6e4 e2a4 (F2 f + 3F4- 45+(5 +.f4a8/3)e' + 

The second of these expresses VI + 64U as a power series in e with leading term 
27ra2e; inverting this power series and substituting the result into the Taylor 
expansion of f, we can write 1/f as a Laurent series -in (I + 64U)1/2: 

I 1 1/2 ~~1 3 - 7T274(1/ 
f(T = 2(I + 64U)--/ + (I + 64U2a ___ /2 + _,a4 

+ 
2+ f (T r)2a 2' 4 8 ?r a6 

I ~~~1 5+ 9'ir2a4 - 4ra 
+ i8( + 64U) + 410 (1 + 64U)3I2 + 

Comparing this with (2) gives 

a =64 2-2n 2n 1 3 r 2n1a I 
n 24 n)\2a2 8'r2a6 2n- I 

15 + 9r 2a4 41T4a8 3 
+ +... 

- 96 4a'? (2n - 1)(2n - 3) 
+ 

- 
64n 1 3 ?( 15 

_ 1)n + 

48a VW 8Tr2a4 ( 64r4al8 128 

We have proved 

THEOREM. The sequence a. has an asymptotic expansion of the form 

an = C (1I 
n n n n ) 

with 

=F, r(3/4)2 0.0168732651505 ... 
12 r(1/4)2 

al = 6 / = 0.07830067 a2 = 60 F(3/4) - l - 0.002405668 
r(3/4)4 r7(1/4)8 128 
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We give two numerical examples. 

64V a, a2 n an C (1_ l + 2 

50 4.853249476 x 1087 4.853249382 x 1087 
100 6.996107097 x 10177 6.996107081 x 10177 

As a second application of the modular form description of the an, we prove the 
congruence properties (18a, b) of the numbers an (mod 3). These can be written in 
the form 

0 (mod 3) if 31 n, 
nan 

I{(mod3) if 3+n, 

or 
0 

()1na-UI u(l - U) E (-1 +n anUn 
= - 

(mod3). 

On the other hand, differentiating (2) and substituting (1), we see that 

f (Tw) E ) (-l)n- anU(T)n= 48lTif'(T)= E na*(n)q. 
n=l n=1 

Since f 1 (mod 3), we have to prove that 

U(l - U) _ 
0 

1 Y. nc&"(n)qn (mod 3). + U3 n= 

From the description of modular forms on P0(2) as polynomials in f and E4 it 
follows that the modular function U must be related to E4/f2 by a fractional linear 
transformation; comparing the first few Fourier coefficients we find 

E4 I + 256U I 
E4_ _f_2 _ 

f2 1+64U' 

where 

pj= 192(E4 _f2) = q + 8q2+ 28q3 + ..= b(n)qn say, 
n? 1 

a modular form of weight 4 on I0(2). Since E4 and f2 are congruent to 1 (mod 48), it 
is clear that 44 has integral coefficients, so that the numbers b(n) are 3-integral, 
which is all we will need; actually, the b(n) themselves are integral, as one can see 
from the identity 4 = U(f2 - 644O) or from the formula 

p ( jE qln2/8) 

n>O 
n odd 
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From U = 01(f 2 - 644) we obtain 

U(l - U) _(f 2 - 644)(f2 - 654) 

l + u3 (f2 - 64)3 + e3 

_ ( +(2 _ 0)(f 2+ 0) = 
3 

2) (o3 _ ___ _____ _ =_ 
l (mod 3). 

Since f 1 (mod 3), the q-expansion of the right-hand side of this is congruent to 
4 - e3 or E (b(n) - b(n/3))q' modulo 3 (with the usual convention b(n/3) = 0 if 
3 + n), so the congruence we have to prove is 

(4) na*(n) b(n) - b(n/3) (mod3). 
The form E4(2T) = 1 + 24OEn;>1a3(n)q2" is a modular form of weight 4 on Io (2) 
and hence a linear combination off 2 and E4 or of E4 and 4. Comparing two Fourier 
coefficients gives E4(2) =E4 - 2404 or 

+(T) = 
I 

(E4(T) - E4(2T)), b(n) = G3(n) - 03(n/2). 

Clearly a3(n) -3(n/3) (mod 3) if 31 n, so (4) is true in this case. On the other hand, 
a3(n) - a(n) = dnd (mod 3) since d3 and d are congruent, and, combining the 
divisors d and n/d, we see that a, (n) 0 (mod 3) if n - 1 (mod 3) or equivalently 
a,(n) n na,(n) (mod 3) if n 0 0 (mod 3). Hence for 3 4 n we have 

cy3(n) - 3(n/2) = n(a1(n) - 2u1(n/2)) = nu*(n) (mod3) 

as required. 
Having proved the formula for a. (mod 3) we offer a conjectural formula for an 

(mod 5): 
(an/5 if 5ln, 

a 0 if n=5k+8,0<8<5,kodd, 

t8(2r) if n = 10r + 8, 0 < 8 < 5. 

It is true up to n = 100. 
Finally, we make a remark about the nature of the numbers a,. Equation (2) 

suggests that the natural generalization of this sequence is the sequence (an) defined 
by a generating function of the form F = E au', where u is a Hauptmodul for some 
group F of genus 0 (e.g. F = SL2(Z), U =i-, F = 1o7(2), u = U, or F = Fo(2) U 
F0(2) (2j - /v2), u = 1/(U + 212/U)) and F a meromorphic modular form of some 
weight k on F. This definition includes both the an (with k = -2) and the sequence 
(A(n)} mentioned several times in the paper (since these satisfy a recursion with 
constant coefficients and hence E A(n)U' is a rational function of U and therefore a 
modular form of weight k = 0), which may explain their parallel properties. The 
sequence (cs) defined by (10) of the paper has no such interpretation, which may 
explain why it apparently does not have such nice arithmetic properties. 
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